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Shared-Variable Concurrency (15 Marks ≈ 40 minutes)

Recall that starvation-freedom is the liveness property relevant to mutual exclusion algorithms.
It is satisfied if every process trying to enter its critical section will eventually do so.

Question 1 (10 marks)

Let A and B be two algorithms which were designed to solve the mutual exclusion problem,
and let C be the algorithm obtained by replacing the critical section of A with the algorithm
B:

Algorithm: C (n processes)
shared vars of A
shared vars of B

loop forever
p1: non-critical section
p2: entry protocol of A
p3: entry protocol of B
p4: critical section
p5: exit protocol of B
p6: exit protocol of A

Assume that the shared variables of A are disjoint from those of B. Are the following statements
correct? Justify each answer briefly (i.e., with a sentence or two).

(a) If both A and B are deadlock-free then C is deadlock-free.

(b) If both A and B are starvation-free then C is starvation-free.

(c) If either A or B satisfies mutual exclusion then C satisfies mutual exclusion.

(d) If A is deadlock-free and B is starvation-free then C is starvation-free.

(e) If A is starvation-free and B is deadlock-free then C is starvation-free.

Question 2 (5 marks)

Does the following mutual exclusion algorithm satisfy starvation-freedom? Sketch a proof or
present a counter-example.

Algorithm: algorithm #3
bit array b[0..1] ← [0,0]

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: b[0] ← 0 q2: b[1] ← 1
p3: while b[0] = 0 do q3: while b[0] = 1 do
p4: b[0] ← 1 q4: b[1] ← 1
p5: while b[1] = 1 do b[0] ← 0 od q5: while b[1] = 0 do b[1] ← 0 od

od od
p6: critical section q6: critical section
p7: b[0] ← 0 q7: b[1] ← 0
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Message-Passing Concurrency (30 Marks ≈ 80 minutes)

Question 3 (8 marks)

Hamming’s problem. Use transition diagrams to present a message passing concurrent program
P = P2 ‖ P3 ‖ P5 ‖M whose output along channel Out is the sequence of all multiples of 2, 3,
and 5 in strictly ascending order. The first elements of the sequence are 0, 2, 3, 4, 5, 6, 8, 9,
10, 12, 14. There will be four concurrent processes: one Pi each to calculate the multiples of
the numbers i = 2, 3, and 5, respectively, and a fourth process M to merge the results.

Question 4 (12 marks)

Modify your solution P to Hamming’s problem such that it terminates after k numbers have
been sent to channel Out, where k ∈ N is a constant known to the merger process. (2 marks)

Define a post-condition ψ for P to capture the essential properties of P as specified above. (2
marks)

Outline a proof of {true}P {ψ} (8 marks).
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Question 5 (10 marks)

Recall the Ricart-Agrawala distributed mutual exclusion algorithm:

Algorithm: Ricart-Agrawala algorithm
integer myNum ← 0
set of node IDs deferred ← empty set
integer highestNum ← 0
boolean requestCS ← false

Main
loop forever

p1: non-critical section
p2: requestCS ← true
p3: myNum ← highestNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)
p6: await reply’s from all other nodes
p7: critical section
p8: requestCS ← false
p9: for all nodes N in deferred
p10: remove N from deferred
p11: send(reply, N, myID)

Receive
integer source, requestedNum
loop forever

p12: receive(request, source, requestedNum)
p13: highestNum ← max(highestNum, requestedNum)
p14: if not requestCS or requestedNum � myNum
p15: send(reply, source, myID)
p16: else add source to deferred

(a) 4 marks: Construct a scenario in which the ticket numbers are unbounded.

(b) 2 marks: Can the deferred lists of all the nodes be non-empty?

(c) 2 marks: What is the maximum number of entries in a single deferred list?

(d) 2 marks: What is the maximum number of entries in all the deferred lists together?

Justify your answers to (b)–(d) briefly (i.e., with a sentence or two).
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